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Repeated Significance Tests on Accumulating Data

By P. ARMITAGE, C. K. McPHERSON and B. C. ROWE

Department of Medical Statistics and Epidemiology,
London School of Hygiene and Tropical Medicine

SUMMARY
If significance tests at a fixed level are repeated at stages during the accumu-
lation of data the probability of obtaining a significant result when the null
hypothesis is true rises above the nominal significance level. Numerical results
are presented for repeated tests on cumulative series of binomial, normal
and exponential observations.

1. INTRODUCTION

THE general effect of performing repeated significance tests at different stages during
the accumulation of a body of data is well known. If the null hypothesis is true and
if each significance test is performed at the same nominal level, the probability that at
some stage or another the test criterion is significant may be substantially greater than
the nominal value. Feller (1940) discussed the possibility that some of the more
significant results in card-guessing experiments in extra-sensory perception might be
attributed to “optional stopping” at particularly favourable stages during an
investigation. The law of the iterated logarithm shows that a test criterion which
takes the form of a standardized cumulative sum of deviations from expectation
divided by its standard error will, with probability one, eventually reach any pre-
assigned value. Thus, in many common situations a result as highly significant as one
desires can be obtained by sufficiently extensive sampling. Robbins (1952) and
Anscombe (1954) provide further discussion of this point. The desire to control the
error of the first kind, as well as the power of a test procedure, was of course one of
the motivations of sequential analysis (Wald, 1947).

More recently the practical relevance of this phenomenon has been called into
question. Anscombe (1954) had pointed out that inferences based on likelihoods or,
through likelihoods, on posterior probabilities were unaffected by stopping rules.
The contrast between this property and the extreme sensitivity of frequency-type
inferences to the stopping rule explains why sequential analysis is a topic of such
contention between adherents of different viewpoints (Birnbaum, 1964; Cornfield,
1966; Armitage, 1967). The exchanges of opinion on these matters have been remark-
able for the lack of quantitative information about the optional stopping effect. It
has not, for example, been possible to answer questions such as the following.

(a) What is the probability of obtaining a result ‘“‘significant” at a certain nominal
level, within the first 50 tests?

(b) Does the enhancement of the probability of obtaining a significant result
reach a noticeably high level only after a very large number of tests?

(c) What is the effect of repeated tests when the null hypothesis is not true?

The purpose of the present paper is to repair some of these gaps in our knowledge
without indulging in further discussion of inferential problems. We consider
sequential observations of three different distributional forms: binomial, normal and
exponential. In the binomial case exact results are obtained by direct calculation of
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probabilities. In the normal case approximate results are obtained by two methods—
numerical integration and simulation; and in the exponential case by numerical
integration. The present results all concern repeated tests of a null hypothesis which
is true; the emphasis is therefore on questions like (a) and (b) above. Later publica-
tions will report results for the non-null situation, as in question (c). We hope to use
all these results to formulate proposals for sequential sampling plans which can be
interpreted either from the frequency point of view, with specified probabilities of
errors, or as repeated significance tests at a specified level, or perhaps as having a
stopping rule defined in terms of likelihood or posterior probability (Armitage, 1967).

2. THE BINOMIAL CASE

Some numerical results published by Armitage (1960, Table 1.2) are incorrect.
Corrected values were published by Armitage (1967) and are extended below.

TABLE 1

The probability of being absorbed at or before the nth observation in

binomial sampling with repeated tests at a nominal two-sided significance

level 20 The number of opportunities of hitting the boundary is shown
in parentheses

& 001 002 0-03 004 005
n

10 000781 (1) 001563 (1) 002930 (2) 005469 (2) 005469 (2)
15 001538 (3) 002844 (3) 003955 (3) 008191 (4) 008191 (4)
20  0-01840 (4) 004033 (5) 0-05248 (5) 0-08970 (5) 0-10662 (6)
25 002266 (6) 004811 (7) 006538 (7) 010326 (7) 0-12140 (8)
30 002746 (8) 005586 (9) 007631 (9) 0-11488 (9)  0-13355 (10)

35  0-03087 (10)  0-06083 (11)  0-08527 (11)  0-12438 (11)  0-14328 (12)
40  0-03406 (12)  0-06531 (13)  0-09255(13)  0-13731(14)  0-15351 (14)
45  0-03687 (14)  0-07034 (15) 0-09848 (15)  0-14416 (16)  0-16399 (16)
50 0-03931 (16) 0-07432 (17)  0-10508 (17)  0-15125(18)  0-17117 (18)
60  0-04319(20)  0-08205 (21) 0-11616 (22) 0-16227 (22)  0-18583 (22)

70  0-04679 (24)  0-08757 (25) 012436 (26)  0-17289 (26)  0:19973 (27)
80  0-05090(29)  0-09402 (30) 0-13083(30)  0-18298 (31)  0-20889 (31)
"90  0-05345(33)  0-09900 (34)  0-13867 (35)  0-19062 (35)  0-21941 (35)
100  0-05586 (37)  0-10320 (38)  0-14436(39)  0-19881 (40)  0-22731 (40)
120 006085 (46)  0-11125 (47)  0-15515(48)  0-21280(50)  0-24187 (49)

140  0-06462(55) 0-11790 (56) 0-16388(57) 022211 (58)  0-25503 (58)
150 006619 (59) 012133 (61) 0-16833(62) 022670 (62)  0-26108 (63)

An experiment consists of a series of independent binomial trials. On the null
hypothesis the probability of success in each trial is 1. After each trial the experimenter
tests the significance of .S,,, the total number of successes, using the test which would
have been appropriate if the number of trials had been fixed in advance. He stops as
soon as he gets a significant result. In other words, he stops the first time the inequality

a,<S,<b,
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fails to be satisfied, where a,, and b,, are the lower and upper two-sided 2« points of the
binomial distribution Bi(n,%). That is, b, is the lowest integer for which in
unrestricted sampling

P(Snzbn)g‘x,

and a, = n—>b,. The value of n at which the experiment stops is denoted by m.

We required the probability distribution of m for various values of «. A general
program for the evaluation of the probabilities for arbitrary {a,,b,}, and arbitrary
probability of success was written by C. K. M., and a separate sub-routine used for
the calculation of the particular {a,, b,} needed here. The main program proceeded
along familiar lines, the number of admissible paths for each set of values {S,} being
determined recursively from those for the {S,,_;}.

Results for 2« = 0-01 (0-01) 0-05 and various values of 7< 150 are given in Table 1.
Because of the discrete nature of the variable, one can stop at only a restricted number
of values of m. As we shall see, this seems to be relevant in comparing the binomial
results with those for normal sampling described below. The number of possible
stopping points for each value of » is shown in brackets in Table 1.

3. THE NORMAL CASE
An experiment consists of a series of observations X;, X, ..., X,, on random
variables which, on the null hypothesis, are independently and normally distributed
with zero mean and unit variance. After each observation the experimenter uses the
cumulative sum

-3 X )

i=1
to test the null hypothesis. He stops sampling when, for the first time,

where y,, = k \Jn for some constant k. The value of  at which the experiment stops is
denoted by m.

In this investigation k has been chosen to correspond to a non-sequential test for
S, at a selected significance level. For two-sided level 2, with the usual notation for
the normal integral,

D) = 1—a.

3.1. Solution by Quadrature

The problem is to find the distribution of m. Denote by f,(s,) the probability
density function of S,, in the sequential procedure. Then

e J‘yn‘ Su—a() J(Z )e)(p{ (s, —u)?} du, <5, <P

Yn—1

©)

otherwise.
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The density function f,, can thus be defined recursively by (3), f; being the standardized
normal density function. The probability of absorption at or before n observations
(that is, the probability that m<n) is then

Po=1— " f (). )
Ca

Alternative formulae are

PamPry =2 " fos@) (100, ) d ®
and "

[ce)
P,—P, ;=2 f
Yn
The basic method was to evaluate the right-hand side of (3) at points on a grid of
width A, that is, for s, = h,2h,...,A,h, where A, h<y,<(A,+1)h, and also for
Sy, = 3(A,h+y,) and s, =y,. This was done by application of a Newton—Cotes
formula of the second order over the range

— A h<u< A, h

fﬂn—l Su—a(®) W;—") exp{— (v —uw)?} dvdu.

—Un—1

and of Simpson’s three-point formula over the range
)‘n—lhglul Syn—l'

P, was evaluated by (4), using the same method of quadrature.

Results for selected values of n< 200, for 2« = 0-10, 0-05, 0-02 and 0-01, based on a
grid width /2 = 0-1, are shown in Table 2 in the columns headed Q. Calculations for
2a = 0-05,#< 100 and % = 0-2 and 0-05 gave values of P, differing at the most by 1 unit
in the fifth decimal place from those for 4 =0-1. Similarly, for 100<7n<200,
changing 4 from 0-1 to 0-2 affects P, by, at the most, 2 units in the fifth place. Results
for P, based on (4) and (5) with s = 0-2 agree to within 1 unit in the fourth place;
(5) is likely to be the less accurate formula. The results in Table 2 for n<200 are
therefore likely to be almost fully accurate to five places.

The lower part of Table 2 (for n>200) shows some further results for which the
calculations were made using & = 0-5. These figures are less accurate than those for
n<200 but at #n = 200 they differ by at the most three digits in the fourth decimal place.
Using such a large value for A, although placing some doubt on the accuracy of the
computation, enables large values of n to be considered without excessive use of
computer time; the calculations for #<1000 and for four boundaries used a total
of 26 min. on an IBM 360/65.

An alternative approach is to work with the quantities

Kh
Prn = f( Fulw)du,

K-k
using the recurrence relation

P = f T ) [O(KR — ) — O((K— 1) h— )] dt

~Yn-1

where f,,_;(«) in the integrand is approximated by p(,/)+3n—1/k and the integral is
evaluated numerically using a standard method of approximation to the normal
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integral. This method has no advantage over that described earlier, and calculations
with varying & showed the first method to be both more accurate and less time-
consuming.

TABLE 2

The probability of being absorbed at or before the nth observation in sampling from a
normal distribution with known variance, with repeated tests at a nominal two-sided
significance level 2o (i.e. standardized normal deviate k)t

20 010 0-05 0-02 0-01
k 1-645 1-960 2:326 2:576

n 0 S Q S 0 N 0 S

1 0-10000 0-0970 0-05000 0-0545 0-02000 0-0230 0-01000 0-0135
2 0-16015 0-1650 0-08312 0-0885 0-03453  0-0385 0-01766 0-0235
3 0-20207 0-1980 0-10726  0-1115 0-04561 0-0510 002366 0-0275
4 0-23399  0-2295 0-12617 0-1260 0-05454 0-0610 0-02858 0-0345
5 0-25963 0-2590 0-14169 0-1420 0-06201  0-0675 0-03274 0-0390

10 0:34169  0-3425 0-19336 0-1925 0-08776  0-0905 0-04738 0-0525

15 0-38973 0-3870 022509  0-2195 0-10419 0-1070 0-05692  0-0625
20 0-42319  0-4300 024791  0-2455 0-11628 0-1200 0-06403  0-0695
25 0-44861 0-4550 026567 0-2665 0-12586 0-1295 0-06971  0-0775
30 0-46896 0-4765 0-28016 0-2855 013379  0-1360 0-07444  0-0815
35 0-48584  0-4925 0-29238 0-3015 0-14054  0-1430 0-07850 0-0865
40 0-50020 0-5045 0-30293 0-3150 0-14643  0-1550 0-08205  0-0905
45 0-51266 0-5170 0-31220  0-3205 0-15165 0-1630 0-08520 0-0960
50 0-52364 0-5260 032045 0-3295 0-15633 0-1700 0-08805 0-1000
60 0-54223  0-5460 0-33464  0-3435 0-16446  0-1795 0-09300 0-1070

70 0-55754  0-5595 0-34653  0-3560 017113  0-1850 0-09722 0-1105
80 0-57051 0-5735 0-35674 0-3655 0-17733  0-1920 0-10090 0-1130

90 0-58170 0-5855 036568 0-3730 0-18260 0-1975 0-10416 0-1170
100 0-59152  0-5975 0-37362 0-3830 0-18732  0-2015 0-10708 0-1195
120 0:60659 0-38722 0-19549 0-11216
140 0-62292 0-39857 0-20238 0-11647
160 0-63315 0-40829 0-20834 0-12022
180 0-64301 041677 0-21359 0-12353
200 065165 0-42429 0-21828 012649
250 0:670 0-440 0-228 0-133
500 0-720 0-487 0-259 0-152
750 0-746 0-513 0-276 0-164

1,000 0-763 0-530 0-288 0172

+ Columns headed Q calculated by quadrature, those headed S by simulation. Grid-width
h = 0-1 for n<200, h = 0-5 for n>200.

3.2. Simulation Results

Before the results discussed in Section 3.1 were available an alternative approach
based on simulation was attempted using programs written by B. C. R. Recent work
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has made the generation of pseudo-random numbers on a digital computer a
straightforward process (see MacLaren and Marsaglia, 1965, or Hull and Dobell,
1962). The following expression was found to give satisfactory results for the
generation of a long sequence of rectangular deviates:

X, ;1 =5°X; (modulo 2%).

These rectangular deviates were then used to generate normal deviates using an
algorithm due to Schafer (1962).

Two main runs were carried out with these sequences. In each case a tabulation
was done of the results from 1,000 experiments. Each experiment involved the
generation of a random deviate with zero mean and unit variance which was added to
a running sum. The value of this sum was then compared with sets of values that
formed boundaries representing the nominal levels of significance. The test was made
both for an upper crossing (S, >y,) and a lower crossing (S, <»,). One hundred
deviates were generated for each experiment, thus providing results comparable with
those obtained by quadrature for n < 100.

These two runs differed in the start number used for the series of rectangular
deviates. Various statistics including the mean, variance and auto-correlation of lag
one were calculated for the two sets of 100,000 normal deviates used in the two runs,
and for the sets of rectangular deviates used in generating the normal deviates, and
proved satisfactory.

The results from these two runs have been combined in Table 2. In addition, the
results for the two sides of the test have been combined. These results are thus directly
comparable with those obtained by quadrature. Virtually all the figures agree at the
first significant digit and many agree to two or even three significant digits. The
standard error of most of the entries is less than 0-01.

The simulation results showed no advantage over those obtained by quadrature in
the amount of machine time required. The quadrature results summarized in
Table 2, with output for all values of n<200, required the following times on an
IBM 360/65: 7 min. 40s.; 9 min. 5s.; 10 min. 20s.; and 11 min. 30s. The two
runs of 1,000 simulation experiments with »< 100, summarized in Table 2, required
about 14 min. each on Atlas. The simulation results could, however, be made more
efficient by the use of a better system and by increasing the efficiency of sampling by
the use of correlated variables.

4. THE EXPONENTIAL CASE
An experiment consists of a series of observations Xj, X,,..., X,, on random
variables which, on the null hypothesis, are independently distributed according
to the exponential distribution e=?dy, and after each observation the cumulative
sum

n
=1

is used to test the null hypothesis. In general 2S,, follows the x> distribution on 2n
degrees of freedom and therefore the lower and upper 100 o per cent probability
points for S, are

%X%n,l—a and %X%n,w
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where x2, is the value of x2 on v degrees of freedom for which there is probability p
of a more extreme value. Thus the experiment continues so long as

Vin<Sa<Yons

where Yy ,, = $x3n1-o and Y, = $x3,4, for a fixed a. The value of » at which the
experiment stops is denoted by m.

4.1. Solution by Numerical Integration

As the probability density function is greater than zero only on the positive real
line it is not satisfactory to use numerical quadrature as in Section 3.1. At each point
on a grid there is not necessarily an odd number of positive ordinates of the conditional
probability density for the previous n, and quadrature formulae involving an even
number of function values are much less accurate than those involving an odd
number. Consequently the distribution of m was calculated using approximate
integration of small grids of depth A.

Thus if

kh
Pepn = f Ja n(u) du,
(k=1)h

where f,,(S,,) is the probability density function of S,,, py,,, can be calculated using the
recurrence relation

Ich
Pin = f Froa(t) {er— N — g} gy,
Y 1n-1

where f,_;(u) is evaluated at the mid-points of the grids using the approximation
Jn—1(t) X Pun)+im—a/h for integral values of u/h+4. If kh>Y,, , then the upper
limit of integration is Y, ,_;. Special allowance has to be made for the integrand near
to the limits of integration, where incomplete grid widths are used.

Table 3 shows the results for four values of 2« and 7<100, calculated using
h=0-1.

These results are very similar to those of the normal distribution and, in general,
the first two significant digits are the same. One possible cause of the irregularity of
the discrepancies between Tables 2 and 3 is the rounding errors in the boundary values
of $x? which were copied from tables with three decimal places. (This explains the
entry 0-051 instead of 0-050 for n = 1.) The cumulative effect of these errors on the
distribution of m could be enough to affect even the second significant digit for large
m. It is hoped in future work to use an algorithm for the value of x? which will reduce
the effect of these errors.

5. DIsCUSSION

Tables 1, 2 and 3 show that the probabilities of exceeding critical levels in repeated
significance tests on accumulating data can be substantially above the nominal
significance levels even for only moderate amounts of data. It would not be surprising
to find an investigator examining his data on, say, five occasions which divided the
accumulating data into approximately equal parts. The probabilities given in Table 2
for n = 5 exceed the nominal levels by a multiple of between 2 and 4. The probability
of a Type I error could be controlled at a specified level by paying attention only to
results significant at a somewhat higher level. For a Type I error probability of 0-05,
for instance, the individual test should be carried out at a level between 0-01 and 0-02.
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Table 4 shows this value as 0-:015. The entries in Table 4 were obtained by inverse

interpolation from calculations at appropriately chosen values of k.

In sampling from N(w, 1), an investigation with n <200, in which significance tests
are applied at n = 50, 100, 150 and 200, would be equivalent to one with n<4 and

TABLE 3

The probability of being absorbed at or before the nth observation in
sampling from an exponential distribution with repeated tests at a

nominal two-sided level 2o,

200
n
0-10 0-05 0-02 0-01
1 0-100 0-051 0-020 0-010
2 0-161 0-084 0-034 0-018
3 0-203 0-108 0-045 0-024
4 0-236 0-128 0-054 0-029
5 0-261 0-143 0-062 0-033
10 0-343 0-195 0-088 0-048
15 0-390 0-227 0-104 0-057
20 0-423 0-249 0-116 0-:065
25 0-449 0-267 0-126 0-070
30 0-469 0-281 0-134 0-075
35 0-486 0-293 0-139 0-079
40 0-500 0-304 0-147 0-083
45 0-512 0-313 0-152 0-086
50 0-523 0-321 0-157 0-089
60 0-542 0-335 0-165 0-094
70 0-557 0-347 0-172 0-098
80 0-570 0-358 0-178 0-102
90 0-581 0-366 0-183 0-105
100 0-591 0-374 0-188 0-108
TABLE 4

Cumulative sampling of normal observations with known variance.
Values of k and 2« giving a probability of absorption at or before the

nth observation equal to 0-05

n k 20
1 1-96 0-050
5 2:42 0-015
10 2:56 0-010
15 2:64 0-008
20 268 0-007
50 2-80 0-005
100 2-88 0-004
200 2:96 0-003
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tests at n =1, 2, 3 and 4. In some circumstances, even though an investigator would
usually do only a small number of intermediate tests, he might be prepared to test at
more frequent intervals if the most recent tests or an informal analysis of current data
suggested that a significance criterion was likely to be reached. This would be very
early equivalent to a procedure in which a test is carried out after each observation,
and the entries in the lower parts of Tables 2 and 4 become relevant. To preserve an
overall Type I error rate of, say, 0-05 the individual tests have to be well beyond the
0-01 level.

It is also interesting to note that even for large values of the nominal significance
level the asymptotic cumulative probability of absorption (equal to unity) is approached
only after a very large number of repeated investigations. For instance, experiments
with repeated significance tests at the 5 per cent level will have a median number of
tests before absorption of 613 and a high probability that they will continue beyond
the 1,000th test when the null hypothesis is true. Alternatively, if an investigator
stops at the 1,000th test whether or not a significant boundary is reached, the average
number of tests in such an investigation under the null hypothesis will be 537.

The results shown in Tables 2 and 4 relate to tests on cumulative sums of observa-
tions from N(u, 1) and are clearly appropriate for any known value of the variance
of the normal distribution. The results for exponential sampling are very close to
those for normal sampling. The analogous results for various non-normal distributions
and for #-tests on normal observations with unknown variance would be of interest
and we hope to study some of these situations in future work. If the results for
binomial series in Table 1 are compared with those for normal observations in
Table 2 the tabulated values for a given n are seen to be considerably lower in Table 1.
This might be expected partly because the binomial tests are conservative, having size
not greater than 2« at each value of n, and also because boundaries can be crossed at
only a restricted number of values of n. The results in Table 1, in fact, correspond
reasonably well to those in Table 2 if the number of crossing points shown in
parentheses in Table 1 is regarded as equivalent to the n of Table 2. The following
extracts from Tables 1 and 2 illustrate this point.

2
0-05 0-02 0-01
Normal (# = 30) 0-2802 0-1338 0-0744

Binomial (n = 80) 0-2089 (31) 0-0940 (30) 0-0509 (29)

The excess of the entries in the first line over those in the second is of much the same
magnitude as the mean difference between nominal significance level and the size of
a binomial test.
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