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Repeated Significance Tests on Accumulating Data 

By P. ARMITAGE, C. K. MCPHERSON and B. C. ROWE 

Department of Medical Statistics and Epidemiology, 
London School of Hygiene and Tropical Medicine 

SUMMARY 
If significance tests at a fixed level are repeated at stages during the accumu- 
lation of data the probability of obtaining a significant result when the null 
hypothesis is true rises above the nominal significance level. Numerical results 
are presented for repeated tests on cumulative series of binomial, normal 
and exponential observations. 

1. INTRODUCTION 
THE general effect of performing repeated significance tests at different stages during 
the accumulation of a body of data is well known. If the null hypothesis is true and 
if each significance test is performed at the same nominal level, the probability that at 
some stage or another the test criterion is significant may be substantially greater than 
the nominal value. Feller (1940) discussed the possibility that some of the more 
significant results in card-guessing experiments in extra-sensory perception might be 
attributed to "optional stopping" at particularly favourable stages during an 
investigation. The law of the iterated logarithm shows that a test criterion which 
takes the form of a standardized cumulative sum of deviations from expectation 
divided by its standard error will, with probability one, eventually reach any pre- 
assigned value. Thus, in many common situations a result as highly significant as one 
desires can be obtained by sufficiently extensive sampling. Robbins (1952) and 
Anscombe (1954) provide further discussion of this point. The desire to control the 
error of the first kind, as well as the power of a test procedure, was of course one of 
the motivations of sequential analysis (Wald, 1947). 

More recently the practical relevance of this phenomenon has been called into 
question. Anscombe (1954) had pointed out that inferences based on likelihoods or, 
through likelihoods, on posterior probabilities were unaffected by stopping rules. 
The contrast between this property and the extreme sensitivity of frequency-type 
inferences to the stopping rule explains why sequential analysis is a topic of such 
contention between adherents of different viewpoints (Birnbaum, 1964; Cornfield, 
1966; Armitage, 1967). The exchanges of opinion on these matters have been remark- 
able for the lack of quantitative information about the optional stopping effect. It 
has not, for example, been possible to answer questions such as the following. 

(a) What is the probability of obtaining a result "significant" at a certain nominal 
level, within the first 50 tests? 

(b) Does the enhancement of the probability of obtaining a significant result 
reach a noticeably high level only after a very large number of tests? 

(c) What is the effect of repeated tests when the null hypothesis is not true? 
The purpose of the present paper is to repair gome of these gaps in our knowledge 

without indulging in further discussion of inferential problems. We consider 
sequential observations of three different distributional forms: binomial, normal and 
exponential. In the binomial case exact results are obtained by direct calculation of 
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probabilities. In the normal case approximate results are obtained by two methods- 
numerical integration and simulation; and in the exponential case by numerical 
integration. The present results all concern repeated tests of a null hypothesis which 
is true; the emphasis is therefore on questions like (a) and (b) above. Later publica- 
tions will report results for the non-null situation, as in question (c). We hope to use 
all these results to formulate proposals for sequential sampling plans which can be 
interpreted either from the frequency point of view, with specified probabilities of 
errors, or as repeated significance tests at a specified level, or perhaps as having a 
stopping rule defined in terms of likelihood or posterior probability (Armitage, 1967). 

2. THE BINOMIAL CASE 

Some numerical results published by Armitage (1960, Table 1.2) are incorrect. 
Corrected values were published by Armitage (1967) and are extended below. 

TABLE 1 

The probability of being absorbed at or before the nth observation in 
binomial sampling with repeated tests at a nominal two-sided significance 
level 2o<. The number of opportunities of hitting the boundary is shown 

in parentheses 

2ot 0 01 0-02 0 03 0 04 0 05 
n\ 

10 0-00781 (1) 0-01563 (1) 0-02930 (2) 0 05469 (2) 0 05469 (2) 
15 0.01538 (3) 0-02844 (3) 0 03955 (3) 0-08191 (4) 0-08191 (4) 
20 0-01840 (4) 0 04033 (5) 0 05248 (5) 0-08970 (5) 0K10662 (6) 
25 0-02266 (6) 0-04811 (7) 0 06538 (7) 0K10326 (7) 0K12140 (8) 
30 0-02746 (8) 0 05586 (9) 0-07631 (9) 0K11488 (9) 0K13355 (10) 

35 0-03087 (10) 0-06083 (11) 0.08527 (11) 0.12438 (11) 0K14328 (12) 
40 0-03406 (12) 0-06531 (13) 0 09255 (13) 0-13731 (14) 0-15351 (14) 
45 0-03687 (14) 0 07034 (15) 0-09848 (15) 0K14416 (16) 0-16399 (16) 
50 0-03931 (16) 0.07432 (17) 0K10508 (17) 0-15125 (18) 0-17117 (18) 
60 0-04319 (20) 0 08205 (21) 0-11616 (22) 0-16227 (22) 0K18583 (22) 

70 0-04679 (24) 0 08757 (25) 0-12436 (26) 0-17289 (26) 0-19973 (27) 
80 0 05090 (29) 0-09402 (30) 0-13083 (30) 0-18298 (31) 0.20889 (31) 
90 0 05345 (33) 0 09900 (34) 0K13867 (35) 0-19062 (35) 0-21941 (35) 

100 0 05586 (37) 0K10320 (38) 0.14436 (39) 0K19881 (40) 0.22731 (40) 
120 0.06085 (46) 0.11125 (47) 0 15515 (48) 0.21280 (50) 0-24187 (49) 

140 0-06462 (55) 0411790 (56) 0.16388 (57) 0-22211 (58) 0 25503 (58) 
150 0-06619 (59) 0.12133 (61) 0416833 (62) 0-22670 (62) 0.26108 (63) 

An experiment consists of a series of independent binomial trials. On the null 
hypothesis the probability of success in each trial is 2. After each trial the experimenter 
tests the significance of S., the total number of successes, using the test which would 
have been appropriate if the number of trials had been fixed in advance. He stops as 
soon as he gets a significant result. In other words, he stops the first time the inequality 

an < S, < bn 
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fails to be satisfied, where an and bn are the lower and upper two-sided 2ox points of the 
binomial distribution Bi (n, 2). That is, bn is the lowest integer for which in 
unrestricted sampling 

P(Sn > bn) < 

and an = n - bn. The value of n at which the experiment stops is denoted by m. 
We required the probability distribution of m for various values of oz. A general 

program for the evaluation of the probabilities for arbitrary {an, bn}, and arbitrary 
probability of success was written by C. K. M., and a separate sub-routine used for 
the calculation of the particular {an, bn} needed here. The main program proceeded 
along familiar lines, the number of admissible paths for each set of values {Sn} being 
determined recursively from those for the {Sn11}. 

Results for 2ox = 0 01 (0 01) 0 05 and various values of n < 150 are given in Table 1. 
Because of the discrete nature of the variable, one can stop at only a restricted number 
of values of m. As we shall see, this seems to be relevant in comparing the binomial 
results with those for normal sampling described below. The number of possible 
stopping points for each value of n is shown in brackets in Table 1. 

3. THE NORMAL CASE 
An experiment consists of a series of observations X1, X2, ...,Xn, on random 

variables which, on the null hypothesis, are independently and normally distributed 
with zero mean and unit variance. After each observation the experimenter uses the 
cumulative sum 

n 
Sn = (1) 

t=1 

to test the null hypothesis. He stops sampling when, for the first time, 

I Sn I > Yn, (2) 

where yn = k Vn for some constant k. The value of n at which the experiment stops is 
denoted by m. 

In this investigation k has been chosen to correspond to a non-sequential test for 
Sn at a selected significance level. For two-sided level 2cx, with the usual notation for 
the normal integral, 

@(k) = 1- oz. 

3.1. Solution by Quadrature 
The problem is to find the distribution of m. Denote by fn(sn) the probability 

density function of Sn in the sequential procedure. Then 

Yn-1 1 

fn(sn) Yn-1Jn-f1(u) 
exp {- 2(sn -u)2} du, n < sn Yn 

0, otherwise. 
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The density functionf. can thus be defined recursively by (3),f1 being the standardized 
normal density function. The probability of absorption at or before n observations 
(that is, the probability that m < n) is then 

Yvn 
Pn= 1- f fn(u)du. (4) 

Jvn 
Alternative formulae are 

Y'7n-1 

Pn-Pn-l = 2J Jn-i u) {1 - (Yn-u) du (5) 

and 
or ryn-i 1 

P. -P = l 2J v J 2fn(u) J(2) exp {I -(v-u)2} dv du. 

The basic method was to evaluate the right-hand side of (3) at points on a grid of 
width h, that is, for s =h, 2h, ..., A h, where A h' yn < (An + 1) h, and also for 
Sn = Y(An h +Yn) and Sn = Yn. This was done by application of a Newton-Cotes 
formula of the second order over the range 

- An-1 h < u< )An-1 h 
and of Simpson's three-point formula over the range 

)tn-1 h < I u I <Yn-1 
Pn was evaluated.by (4), using the same method of quadrature. 

Results for selected values of n < 200, for 2xt = 0 10, 0'05, 0-02 and 0 01, based on a 
grid width h = 01, are shown in Table 2 in the columns headed Q. Calculations for 
2xt = 0 05, n < 100 and h = 0-2 and 0 05 gave values of Pn differing at the most by 1 unit 
in the fifth decimal place from those for h = 01. Similarly, for 100 < n < 200, 
changing h from 0 I to 0-2 affects Pn by, at the most, 2 units in the fifth place. Results 
for Pn based on (4) and (5) with h = 0-2 agree to within 1 unit in the fourth place; 
(5) is likely to be the less accurate formula. The results in Table 2 for n < 200 are 
therefore likely to be almost fully accurate to five places. 

The lower part of Table 2 (for n > 200) shows some further results for which the 
calculations were made using h = 0 5. These figures are less accurate than those for 
n < 200 but at n = 200 they differ by at the most three digits in the fourth decimal place. 
Using such a large value for h, although placing some doubt on the accuracy of the 
computation, enables large values of n to be considered without excessive use of 
computer time; the calculations for n < 1000 and for four boundaries used a total 
of 26 min. on an IBM 360/65. 

An alternative approach is to work with the quantities 
Kh 

PK,n = fn(u) du, 
J (K-1)h 

using the recurrence relation 
('1Yn-i 

PK,n = J fn-(u) [(D(Kh - u) - .D{(K- 1) h - u}] du, -nYn-1 
where fn-1(u) in the integrand is approximated by P(u/h)+i+,lnl/h and the integral is 
evaluated numerically using a standard method of approximation to the normal 
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integral. This method has no advantage over that described earlier, and calculations 
with varying h showed the first method to be both more accurate and less time- 
consuming. 

TABLE 2 

The probability of being absorbed at or before the nth observation in sampling from a 
normal distribution with knQwn variance, with repeated tests at a nominal two-sided 

significance level 2o6 (i.e. standardized normal deviate k)t 

2xt 0 10 005 0.02 001 
k 1-645 1-960 2-326 2 576 

n Q S Q S Q S Q S 

1 0 10000 0.0970 0 05000 0 0545 0-02000 0-0230 0.01000 0.0135 
2 0K16015 0K1650 0-08312 0-0885 0.03453 0 0385 0-01766 0 0235 
3 0-20207 0K1980 0-10726 0K1115 0-04561 0 0510 0.02366 0 0275 
4 0.23399 0 2295 0d12617 0K1260 0 05454 0-0610 0 02858 0.0345 
5 0 25963 0 2590 0d14169 0.1420 0-06201 0 0675 0.03274 0 0390 

10 0-34169 0 3425 0K19336 0K1925 0.08776 0*0905 0.04738 0 0525 
15 0-38973 0-3870 0 22509 0-2195 0.10419 0-1070 0 05692 0 0625 
20 0-42319 0 4300 0-24791 0 2455 0d11628 041200 0.06403 0 0695 
25 0-44861 0 4550 0 26567 0 2665 0412586 041295 0-06971 0 0775 
30 0-46896 0 4765 0-28016 0 2855 0.13379 041360 0 07444 0.0815 

35 0-48584 0 4925 0-29238 0.3015 0414054 0.1430 0 07850 0 0865 
40 0-50020 0 5045 0-30293 0-3150 0414643 0.1550 0 08205 0 0905 
45 0-51266 0-5170 0-31220 0.3205 0-15165 0-1630 0.08520 0-0960 
50 0 52364 0 5260 0.32045 0 3295 0415633 0-1700 0 08805 041000 
60 0 54223 0 5460 0.33464 0 3435 0-16446 0*1795 0 09300 0.1070 

70 0.55754 0.5595 0 34653 0 3560 0.17113 0-1850 0.09722 0 1105 
80 0-57051 0 5735 0 35674 0 3655 0-17733 0-1920 0 10090 0-1130 
90 0-58170 0 5855 0 36568 0 3730 0-18260 0-1975 0.10416 0-1170 

100 0-59152 0 5975 0-37362 0-3830 0-18732 0-2015 0.10708 01195 
120 0 60659 0.38722 0.19549 0.11216 

140 0-62292 0 39857 0-20238 0-11647 
160 0.63315 0-40829 0-20834 0.12022 
180 0-64301 0-41677 0.21359 0.12353 
200 0-65165 0.42429 0-21828 0.12649 
250 0-670 0 440 0-228 0.133 

500 0-720 0-487 0 259 0.152 
750 0-746 0-513 0.276 0.164 

1,000 0-763 0 530 0-288 0.172 

t Columns headed Q calculated by quadrature, those headed S by simulation. Grid-width 
h = 0 1 for n < 200, h = 0 5 for n > 200. 

3.2. Simulation Results 
Before the results discussed in Section 3.1 were available an alternative approach 

based on simulation was attempted using programs written by B. C. R. Recent work 
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has made the generation of pseudo-random numbers on a digital computer a 
straightforward process (see MacLaren and Marsaglia, 1965, or Hull and Dobell, 
1962). The following expression was found to give satisfactory results for the 
generation of a long sequence of rectangular deviates: 

Xi+,= 55 X, (modulo 226). 

These rectangular deviates were then used to generate normal deviates using an 
algorithm due to Schafer (1962). 

Two main runs were carried out with these sequences. In each case a tabulation 
was done of the results from 1,000 experiments. Each experiment involved the 
generation of a random deviate with zero mean and unit variance which was added to 
a running sum. The value of this sum was then compared with sets of values that 
formed boundaries representing the nominal levels of significance. The test was made 
both for an upper crossing (S,, ,yn) and a lower crossing (S, s<y,). One hundred 
deviates were generated for each experiment, thus providing results comparable with 
those obtained by quadrature for n < 100. 

These two runs differed in the start number used for the series of rectangular 
deviates. Various statistics including the mean, variance and auto-correlation of lag 
one were calculated for the two sets of 100,000 normal deviates used in the two runs, 
and for the sets of rectangular deviates used in generating the normal deviates, and 
proved satisfactory. 

The results from these two runs have been combined in Table 2. In addition, the 
results for the two sides of the test have been combined. These results are thus directly 
comparable with those obtained by quadrature. Virtually all the figures agree at the 
first significant digit and many agree to two or even three significant digits. The 
standard error of most of the entries is less than 0-01. 

The simulation results showed no advantage over those obtained by quadrature in 
the amount of machine time required. The quadrature results summarized in 
Table 2, with output for all values of n <200, required the following times on an 
IBM360/65: 7min. 40s.; 9min. 5s.; 10min. 20s.; and 11min. 30s. The two 
runs of 1,000 simulation experiments with n < 100, summarized in Table 2, required 
about 14 min. each on Atlas. The simulation results could, however, be made more 
efficient by the use of a better system and by increasing the efficiency of sampling by 
the use of correlated variables. 

4. THE EXPONENTIAL CASE 

An experiment consists of a series of observations Xl, X2, ...,X on random 
variables which, on the null hypothesis, are independently distributed according 
to the exponential distribution e- dy, and after each observation the cumulative 
sum 

n 
Sn = z Xi 

i=l 

is used to test the null hypothesis. In general 2S. follows the x2 distribution on 2n 
degrees of freedom and therefore the lower and upper 100 of per cent probability 
points for S. are 

1X2n,i-o and 1 2 
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where x2, is the value of x2 on v degrees of freedom for which there is probability p 
of a more extreme value. Thus the experiment continues so long as 

Y1,n < Sn < Y2,n 

where Y1,n = %X2n,i- and Y2, = i2x,o' for a fixed oz. The value of n at which the 
experiment stops is denoted by m. 

4.1. Solution by Numerical Integration 
As the probability density function is greater than zero only on the positive real 

line it is not satisfactory to use numerical quadrature as in Section 3.1. At each point 
on a grid there is not necessarily an odd number of positive ordinates of the conditional 
probability density for the previous n, and quadrature formulae involving an even 
number of function values are much less accurate than those involving an odd 
number. Consequently the distribution of m was calculated using approximate 
integration of small grids of depth h. 

Thus if 
(kh 

Pk,n = fn(u) du, 
(k-1)h 

wherefn(Sn) is the probability density function of Sn, Pk,n can be calculated using the 
recurrence relation 

rkh 
Pk,n = J n1(u) {eu-(k-1)h - eu-kh} du, 

J Yln-1 

where fn-1(u) is evaluated at the mid-points of the grids using the approximation 
aP(UIh)++,n-lIh for integral values of u/h?+ . If kh> Y2,n-1 then the upper 

limit of integration is Y2,n-l. Special allowance has to be made for the integrand near 
to the limits of integration, where incomplete grid widths are used. 

Table 3 shows the results for four values of 2ax and n ? 100, calculated using 
h = 0.1. 

These results are very similar to those of the normal distribution and, in general, 
the first two significant digits are the same. One possible cause of the irregularity of 
the discrepancies between Tables 2 and 3 is the rounding errors in the boundary values 
of 2X2 which were copied from tables with three decimal places. (This explains the 
entry 0-051 instead of 0.050 for n = 1.) The cumulative effect of these errors on the 
distribution of m could be enough to affect even the second significant digit for large 
m. It is hoped in future work to use an algorithm for the value of x2 which will reduce 
the effect of these errors. 

5. DISCUSSION 
Tables 1, 2 and 3 show that the probabilities of exceeding critical levels in repeated 

significance tests on accumulating data can be substantially above the nominal 
significance levels even for only moderate amounts of data. It would not be surprising 
to find an investigator examining his data on, say, five occasions which divided the 
accumulating data into approximately equal parts. The probabilities given in Table 2 
for n = 5 exceed the nominal levels by a multiple of between 21 and 4. The probability 
of a Type I error could be controlled at a specified level by paying attention only to 
results significant at a somewhat higher level. For a Type I error probability of 0 05, 
for instance, the individual test should be carried out at a level between 0X01 and 0X02. 
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Table 4 shows this value as 0-015. The entries in Table 4 were obtained by inverse 
interpolation from calculations at appropriately chosen values of k. 

In sampling from N(p, 1), an investigation with n < 200, in which significance tests 
are applied at n = 50, 100, 150 and 200, would be equivalent to one with n < 4 and 

TABLE 3 

The probability of being absorbed at or before the nth observation in 
sampling from an exponential distribution with repeated tests at a 

nominal two-sided level 2x 

2cx 
n 

0.10 0.05 0-02 0.01 

1 0.100 0.051 0.020 0-010 
2 0.161 0.084 0.034 0-018 
3 0-203 0d108 0-045 0-024 
4 0-236 0.128 0-054 0-029 
5 0-261 0.143 0.062 0-033 

10 0-343 0-195 0.088 0-048 
15 0-390 0-227 0.104 0-057 
20 0-423 0.249 0.116 0.065 
25 0-449 0.267 0-126 0-070 
30 0-469 0.281 0.134 0-075 

35 0.486 0-293 0.139 0-079 
40 0.500 0-304 0.147 0-083 
45 0-512 0.313 0.152 0-086 
50 0.523 0.321 0.157 0-089 
60 0-542 0.335 0.165 0-094 

70 0-557 0*347 0.172 0-098 
80 0-570 0-358 0-178 0-102 
90 0.581 0-366 0.183 0105 

100 0-591 0-374 0.188 0-108 

TABLE 4 

Cumulative sampling of normal observations with known variance. 
Values of k and 2ct giving a probability of absorption at or before the 

nth observation equal to 0 05 

n k 2cx 

1 1P96 0-050 
5 2-42 0-015 

10 2-56 0-010 
15 2.64 0.008 
20 2-68 0-007 
50 2.80 0.005 

100 2.88 0.004 
200 2.96 0-003 
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tests at n = 1, 2, 3 and 4. In some circumstances, even though an investigator would 
usually do only a small number of intermediate tests, he might be prepared to test at 
more frequent intervals if the most recent tests or an informal analysis of current data 
suggested that a significance criterion was likely to be reached. This would be very 
early equivalent to a procedure in which a test is carried out after each observation, 
and the entries in the lower parts of Tables 2 and 4 become relevant. To preserve an 
overall Type I error rate of, say, 0 05 the individual tests have to be well beyond the 
0 01 level. 

It is also interesting to note that even for large values of the nominal significance 
level the asymptotic cumulative probability of absorption (equal to unity) is approached 
only after a very large number of repeated investigations. For instance, experiments 
with repeated significance tests at the 5 per cent level will have a median number of 
tests before absorption of 613 and a high probability that they will continue beyond 
the 1,000th test when the null hypothesis is true. Alternatively, if an investigator 
stops at the 1,000th test whether or not a significant boundary is reached, the average 
number of tests in such an investigation under the null hypothesis will be 537. 

The results shown in Tables 2 and 4 relate to tests on cumulative sums of observa- 
tions from N(p, 1) and are clearly appropriate for any known value of the variance 
of the normal distribution. The results for exponential sampling are very close to 
those for normal sampling. The analogous results for various non-normal distributions 
and for t-tests on normal observations with unknown variance would be of interest 
and we hope to study some of these situations in future work. If the results for 
binomial series in Table 1 are compared with those for normal observations in 
Table 2 the tabulated values for a given n are seen to be considerably lower in Table 1. 
This might be expected partly because the binomial tests are conservative, having size 
not greater than 2a at each value of n, and also because boundaries can be crossed at 
only a restricted number of values of n. The results in Table 1, in fact, correspond 
reasonably well to those in Table 2 if the number of crossing points shown in 
parentheses in Table 1 is regarded as equivalent to the n of Table 2. The following 
extracts from Tables 1 and 2 illustrate this point. 

2ct 

0-05 002 001 

Normal (n = 30) 0 2802 0K1338 0 0744 
Binomial (n = 80) 0-2089 (31) 00940 (30) 0-0509 (29) 

The excess of the entries in the first line over those in the second is of much the same 
magnitude as the mean difference between nominal significance level and the size of 
a binomial test. 
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